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Abstract
We consider a possible zero mass limit of the relativistic Thomas–Fermi–von
Weizsäcker model of atoms and molecules. We find sharp bounds for the
critical atomic number below which there is stability and above which the
system collapses.

PACS numbers: 31.15.Bs, 31.15.Ew

1. Introduction

A possible zero mass limit, neglecting logarithmic divergences, of the relativistic Thomas–
Fermi–von Weizsäcker (henceforth ultrarelativistic TFW) energy functional for nuclei of
charges zi > 0 (which need not be integral) located at Ri , i = 1, . . . , k, is defined by [1–3]

ξ(ρ) = a2
∫
(∇ρ1/3)2 dx + b2

∫
ρ4/3 dx −

∫
V (x)ρ(x) dx + D(ρ, ρ). (1)

Here x ∈ R
3, dx denotes the standard Lebesgue measure, ρ(x) � 0 is the electron density,

V (x) = α

k∑
i=1

zi

|x − Ri | (2)

is the electrostatic potential created by the nuclei,

D(ρ, ρ) = α

2

∫
ρ(x)ρ(y)

|x − y| dx dy (3)

is the electronic repulsion and α = e2/h̄c ≈ 1/137 is the fine structure constant. The constants
a2 and b2 in (1) are given respectively by

a2 = 3

8π2
(3π2)2/3λ (4)

and

b2 = 3
4 (3π

2)1/3. (5)
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(Whenever we use a and b we consider them to be positive.) The constant λ in (4) has different
values according to different approximations. According to the original von Weizsäcker model
[8], λ = 1/9. In the derivation of Tomishima and Yonei [7], λ = 1/5. Finally, based on
energy considerations, Lieb found [4, 5] λ = 0.185.

Let us first study the atomic case, i.e. the case k = 1, z1 = z, R1 = 0. Because of simple
scaling considerations, if we minimize the energy functional (1) over all functions ρ for which
each of the terms in (1) makes sense, the infimum of the energy functional is either 0 or −∞.
In the first case we say the atom is stable, otherwise the atom is unstable. Our purpose here
is to determine the range of values of the atomic number z for which the atom is stable. Our
main result in the atomic case is the following theorem.

Theorem 1. Let

ξ(ρ) = a2
∫
(∇ρ1/3)2 dx + b2

∫
ρ4/3 dx −

∫
zα

ρ

|x| dx + D(ρ, ρ) (6)

with D(ρ, ρ) given by (3). Then

inf ξ(ρ) =
{−∞ for z > 4ab

3α + 7πa3

6b3

0 for z < 4ab
3α

(7)

where the infimum is taken over all non-negative functions ρ(x) such that ρ ∈ L4/3(R3),

∇ρ1/3 ∈ L2(R3) and D(ρ, ρ) < ∞.

Remarks 1

(i) It follows from (7) that if z < 4ab/(3α) the atom is stable, whereas if z > 4ab/(3α) +
7πa3/(6b3) the atom is unstable. We do not know, in general, the exact critical value of z
(say zc) separating the region of stability from the region of unstability. However, it turns
out that for physical values of the constants, the gap between the upper and lower bounds
on zc is less than 1, and therefore negligible (see the following remarks).

(ii) For the physical values of a and b given by (4) and (5), the atom will be stable
if z <

√
3λ/2/α ≈ 167.8

√
λ. Thus, if λ = 1/9 (i.e. the original value used by

von Weizsäcker [8]) the atom is stable if z < 56. If λ = 1/5 (i.e. the value used by
Tomishima and Yonei [7]) the atom is stable if z < 75. Finally, using the value of Lieb
[4, 5], the atom is stable if z < 73.

(iii) As for the value of the gap,using the physical values of the constants,we get 7πa3/(6b3) =
(7/12π)

√
3λ3/2 < 0.021 < 1 for all values of λ considered above. Thus, the gap is

negligible from the physical point of view.

The rest of the paper is organized as follows. In section 2 we prove a functional inequality
which is the key ingredient in the proof of our main result. This functional inequality is of
independent interest. We then proceed with the proof of theorem 1. In section 3 we extend
our results to the molecular case.

2. Atomic case

We start this section by proving a functional inequality which plays a crucial role in what
follows and is of independent interest.

Lemma 1. Consider the functional

F(ψ) = a2
∫
(∇ψ)2 dx + b2

∫
ψ4 dx

α
∫
ψ3|x|−1 dx

(8)
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defined on the set

D ≡ {ψ | ψ ∈ L4(R3),∇ψ ∈ L2(R3), ψ �≡ 0, ψ � 0}. (9)

Then

F(ψ) � 4ab

3α
. (10)

Moreover, equality is attained in (10) if and only if ψ = (a/b)(|x| + K)−1, where K is any
positive constant.

Proof. We first note thatψ ∈ D implies
∫
ψ3/|x| dx < ∞. In fact, using thatψ ∈ D, it follows

from Sobolev’s inequality (see, e.g., [6], theorem 8.3) that ψ ∈ L6(R3, dx). Therefore,
ψ ∈ L4(R3, dx) ∩ L6(R3, dx), i.e. ψ3 ∈ L4/3(R3, dx) ∩ L2(R3, dx). On the other hand,
1/|x| ∈ L2(R3, dx) + L4(R3, dx). Thus, by Hölder’s inequality,

∫
ψ3/|x| dx < ∞.

The rest of the proof is performed in two steps. We first prove that the functional F(ψ)
is decreasing under symmetric rearrangements. Then, it is enough to prove the bound (8) for
non-increasing spherically symmetric functions. Finally, the cases of equality will be clear
from our proof.

First step. Here we state a few necessary facts about the symmetric-decreasing rearrangement
of a function. We follow the recent book by Lieb and Loss [6] (see section 3.3, pp 72ff)
which we refer to for details. If A ⊂ R

3 is a Borel set of finite Lebesgue measure, the set
A∗, the symmetric rearrangement of the set A, is defined to be the open ball centred at the
origin having the same volume as A. (All results quoted below hold good in all dimensions;
because of our functional, here we have restricted ourselves to only R

3.) The symmetric-
decreasing rearrangement of a characteristic function of a set is defined as χ∗

A ≡ χA∗ . Now,
if f : R

3 → R is a Borel measurable function vanishing at infinity (see [6]), the symmetric-
decreasing rearrangement, f ∗, of the function f is defined by

f ∗(x) ≡
∫ ∞

0
χ∗

{|f |> t}(x) dt .

The function f ∗ is radially symmetric and non-increasing as a function of |x|. There are three
main properties of symmetric-decreasing rearrangements that we need here. The first one is
that they preserve all the Lp norms. In particular, if f ∈ L4(R3),∫

f 4 dx =
∫
(f ∗)4 dx. (11)

Since the function 1/|x| is a symmetric-decreasing one, it also follows from the general
properties of symmetric-decreasing rearrangements that∫

f 3

|x| dx �
∫

(f ∗)3

|x| dx. (12)

In fact, if g and h are non-negative functions in R
3 (in general in R

N for that matter), vanishing
at infinity, ∫

gh dx �
∫

g∗h∗ dx. (13)

(see, e.g., [6], theorem 3.4). Taking g to be f 3 and h = 1/|x| = h∗, (12) follows. Finally, if
f is such that ∇f ∈ L2(R3, dx), then∫

(∇f )2 dx �
∫
(∇f ∗)2 dx (14)

(see, e.g., [6], lemma 7.17).
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It follows immediately from (8), and the properties of the symmetric-decreasing
rearrangements embodied in (11), (12), and (14), that

F(ψ) � F(ψ∗) (15)

for any ψ ∈ D, which concludes the first step of our proof.

Second step. We may consider now non-zero radially symmetric functions ψ(r), with non-
positive derivative, where r = |x|. Denoting ψ ′(r) = dψ/dr , we can write

F(ψ) = a2
∫∞

0 (ψ ′)2r2 dr + b2
∫∞

0 ψ4r2 dr

α
∫∞

0 ψ3r dr
(16)

for radially symmetric functions in D. After an integration by parts, we obtain∫ ∞

0
(ψ)3r dr = −3

2

∫ ∞

0
(ψ)2ψ ′r2 dr = 3

4ab

∫ ∞

0
(−2abψ2ψ ′)r2 dr. (17)

Finally, (10) follows from (16), (17) and

−2abψ2ψ ′ � a2(ψ ′)2 + b2ψ4. (18)

The case of equality in (10) is obtained if and only if aψ ′ = −bψ2. Integrating the last
equation, we get the equality in (10) if and only if

ψ = ψ̄(r) = a

b

1

r + K
(19)

for any positive constant K. �

Given the result of the previous lemma, it is straightforward to prove theorem 1.

Proof (Proof of theorem 1). Setting ρ = ψ3 � 0 in (6), we get

J (ψ) ≡ ξ(ρ) = a2
∫
(∇ψ)2 dx + b2

∫
ψ4 dx − αz

∫
ψ3

|x| dx +
α

2

∫
ψ3(x)ψ3(y)

|x − y| dx dy.

(20)

Evaluating J (ψ) for ψ(x) given by (19) (i.e. for the function that minimizes F(ψ)), we get

J (ψ̄) = 2π

K

a3

b3

(
4

3
ab − αz +

7

6
πα

(a
b

)3
)
. (21)

If z > 4ab/(3α) + (7π/6)(a/b)3, letting K → 0 in (21), we obtain

inf J (ψ) = lim
K→0

J (ψ̄) = −∞ (22)

i.e. the atom is unstable. On the other hand, if z < 4ab
3α , by lemma 1, we have J (ψ) � 0 for

all ψ , i.e. the atom is stable. In fact,

inf J (ψ) = lim
K→∞

J (ψ̄) = 0 (23)

in this case. �

3. Molecular case

Lemma 1 is also useful for obtaining estimates of the nuclear charges of a molecule (i.e.
the z′

i in (2)) that ensure its stability. As we showed in the proof of lemma 1, ψ ∈ D
implies ψ3 ∈ L4/3(R3, dx) ∩ L2(R3, dx). Since V , given by (2), belongs to L2(R3, dx) +
L4(R3, dx), using Hölder’s inequality we have

∫
V (x)ψ3 dx < ∞. It follows from (13) that∫

Vψ3 dx �
∫

V ∗(ψ3)∗ dx =
∫

V ∗(ψ∗)3 dx. (24)
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The symmetric-decreasing rearrangement of V is just V ∗(x) = Zα/|x|, where Z = ∑k
i=1 zi .

Thus, from (24) and lemma 1, we have∫
Vψ3 dx � 3α

4ab

(
a2
∫
(∇ψ)2 dx + b2

∫
ψ4 dx

)
(25)

for all ψ ∈ D. Setting ρ = ψ3 � 0 in (1), it follows immediately from (25) that
ξ(ρ) � 0 (26)

if

Z =
k∑

i=1

zi � 4ab

3α
. (27)

Hence the molecule in the ultrarelativistic TFW model is stable for these values of Z. As in
the atomic case we can show in fact that inf ξ(ρ) = 0. For this purpose, we take ψ̄(r), given
by (19), as a trial function. A straightforward computation gives

ξ(ψ̄
3
) = 2π

K

a3

b3

(
4

3
ab − α

k∑
i=1

zif

(
Ri

K

)
+

7

6
πα

(a
b

)3
)

(28)

where

f (u) ≡ 2

u
log(1 + u)− 1

1 + u
. (29)

For the last computation note that∫
ψ̄3(x)

|x − Ri | dx = a3

b3

∫ ∞

0

r2 dr

(r + K)3

∫
d)

|x − Ri | = 2π

K

a3

b3
f

(
Ri

K

)
,

where we have used Newton’s theorem,
1

4π

∫
d)(x)

|x − y| = 1

max(|x|, |y|).
For u � 0, 0 � f (u) � 1. Moreover, limu→0 f (u) = 1. Hence, from (28) we get

inf ξ(ρ) = lim
K→∞

ξ(ψ̄
3
) = 0 (30)

whenever Z satisfies (27). We have thus proved the following stability condition for molecules.

Theorem 2. Let

ξ(ρ) = a2
∫
(∇ρ1/3)2 dx + b2

∫
ρ4/3 dx −

∫
Vρ dx + D(ρ, ρ) (31)

with V given by (2) and D(ρ, ρ) given by (3). Then

inf ξ(ρ) = 0 if Z =
k∑

i=1

zi � 4ab

3α
(32)

where the infimum is taken over all non-negative functions ρ(x) such that ρ ∈ L4/3(R3),

∇ρ1/3 ∈ L2(R3) and D(ρ, ρ) < ∞.
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